

NFV with OpenStack

Vincent Jardin CTO 6Wind @VincentJardin Nick Barcet VP Products eNovance @nijaba

Proprietary hardware

Full re-deployment for each new generation network

What if this went went virtual?

What if this went went virtual? What if this went scalable?

What if this went went virtual?

What if this went scalable?

What if this was just like cloud?

Creation of ETSI NFV

 In November 2012 seven of the world's leading telecoms network operators selected ETSI to be the home of the Industry Specification Group for NFV.

 2 years later: 230 individual companies including 37 of the world's major service providers as well as representatives from both telecoms and IT vendors.

NFV business opportunities

- Latest major disruption in the telco marketplace since IP introduction
- Create opportunities for service providers:
 - To accelerate development of new services
 - To implement Network and IT convergence
- Force NEP
 - To change their business model (transform themselves as Software Providers)
 - To redesign their software

OpenStack NFV subteam

- NFV support for OpenStack aims to provide the best possible infrastructure for such workloads to be deployed in, while respecting the design principles of a laaS cloud.
- In order for VNF to perform correctly in a cloud world, the underlying infrastructure needs to provide a certain number of functionalities which range from scheduling to networking and from orchestration to monitoring capacities.
- This means that to correctly support NFV use cases in OpenStack, implementations may be required across most, if not all, main OpenStack projects, starting with Neutron and Nova.

https://wiki.openstack.org/wiki/Teams/NFV

3 main specific problems for NFVi

North/South connectivity requirements

3 main specific problems for NFVi

North <-> South connectivity requirements

• High Service Level Agreement requirements

3 main specific problems for NFVi

North <-> South connectivity requirements

• High Service Level Agreement requirements

• East <-> West connectivity requirements

NFV Simplified Architecture

Use Cases

Workload Type	Description	Characteristics	Examples
Data plane	Tasks related to packet handing in an end-to-end communication between edge applications.	Intensive I/O requirements - potentially millions of small VoIP packets per second per core Intensive memory R/W requirements	CDN cache node Router IPSec tunneller Session Border Controller - media relay function
Control plane	Any other communication between network functions that is not directly related to the end-to-end data communication between edge applications.	Less intensive I/O and R/W requirements than data plane, due to lower packets per second More complicated transactions resulting in (potentially) higher CPU load per packet.	PPP session management Border Gateway Protocol (BGP) routing Remote Authentication Dial In User Service (RADIUS) authentication in a Broadband Remote Access Server (BRAS) network function Session Border Controller - SIP signaling function IMS core functions (S-CSCF / I-CSCF / BGCF)
Signal processing	All network function tasks related to digital processing	Very sensitive to CPU processing capacity. Delay sensitive.	Fast Fourier Transform (FFT) decoding Encoding in a Cloud-Radio Access Network (C-RAN) Base Band Unit (BBU) Audio transcoding in a Session Border Controller
Storage	All tasks related to disk storage.	Varying disk, SAN, or NAS, I/O requirements based on applications, ranging from low to extremely high intensity.	Logger Network probe

Blueprints implemented in Juno

Description	Project(s)	Status
Support two interfaces from one VM attached to the same network	Nova	Design Approved / Implemented
SR-IOV Networking Support	Nova	Design Approved / Needs Code Review
Virt driver guest vCPU topology configuration	Nova	Design Approved / Implemented
Evacuate instance to scheduled host	Nova	Approved / Implemented (juno-2)

What's brewing for Kilo? (Highest Priority)

Description	Project(s)	Status
 VLAN trunking networks for NFV VLAN tagged traffic transmissible over a tenant network decomposition of VLAN trunks to virtual networks VLAN tagged traffic to a physical appliance management of VLANs on ports as subports 	Neutron	New
Permit unaddressed interfaces for NFV use cases	Neutron	New

What's brewing for Kilo (the rest)

Description	Project(s)	Status	Description	Project(s)	Status
Discless VM	Nova	Under discussion	Port mirroring	Neutron	Under discussion
Framework for Advanced Services in Virtual Machines	Neutron	Under Discussion	 Schedule vms per flavour cpu overcommit 	Nova	New
I/O (PCIe) Based NUMA Scheduling	Nova	Design Approved / Needs Code Review	Snabb NFV mechanism driver	Neutron	Approved
Network QoS API	Neutron	Under discussion	Solver Scheduler - complex constraints scheduler with NFV use cases	Nova	Design review in progress
Neutron Services Insertion, Chaining, and Steering	Neutron	Design Approved / Needs Code Review	Support userspace vhost in ovs vif bindings	Nova	Design review in progress
NIC state aware scheduling	Nova	Rejected	Traffic Steering Abstraction	Neutron	Design review in progress
Open vSwitch to use patch ports in place of veth pairs for vlan n/w	Neutron	Superseded / Unknown	VIF_VHOSTUSER (qemu vhost-user) support	Nova	Approved
Open vSwitch-based Security Groups: Open vSwitch Implementation of FirewallDriver	Neutron	Design review in progress	Virt driver guest NUMA node placement & topology	Nova	Design Approved / Needs Code Review
OVF Meta-Data Import via Glance	Glance	New	Virt driver large page allocation for guest RAM *	Nova	Design Approved / Needs Code Review
Persist scheduler hints	Nova	Design review in progress	Virt driver pinning guest vCPUs to host pCPUs	Nova	Design Approved / Needs Code Review

Openstack related challenges

- Cultural Changes:
 - Introduction of devops, Continuous Integration, ...
 - Work with opensource communities
 - No more standards...
 - 80% is good enough...
- Technical, R&D:
 - Openstack is evolving very fast (major release every 6 months)
 - Limited availability of skills
 - Redesign of application to become cloud application
- Operation:
 - Need to educate/train people

North ↔ South East ↔ West

Virtual Network Performances With 6WIND

Performance first

High Performance East-West Communications

What if SRIOV? or what if XYZ PCI passthru technologies?

High Performance East-West Communications

Typical NFV Performance Bottlenecks

6WINDGate for Industry-Leading Processor Platforms

Linux Compatibility is Critical

Linux Acceleration via 6WINDGate

Neutron's protocols – strong needs from a fast path

Say no to proprietary plugins Say no to SRIOV to be SDN ready. Accelerate Neutron

©6WIND 2014

6WINDGate Extensions to Virtualization

6WINDGate NFVI + VM Performance Comparison

Test 1: Standard Open vSwitch + Virtio

Test 2: **6WINDGate OVS Acceleration + Fast vNIC Linux**

Test 3: 6WINDGate OVS Acceleration + Fast vNIC PMD

Compute nodes with 6WINDGate, Openstack-horizon

Virtual Switch-Based NFVI Lowest Latency and Flexible Chaining

Virtual Switching With 6WINDGate

- Hardware independent virtual switching (NIC driver)
- Aggregate 500 Gbps bandwidth with low latency
- No external limit to number of chained VNFs

Physical Switching Limitations

- Hardware dependent switching (SR-IOV, RDMA, NIC embedded switching)
- Throughput is limited by PCI Express (50 Gbps) and faces PCI Express and DMA additional latencies
- Available PCI slots limit the number of chained VNFs
- At 30 Gbps a **single** VNF is supported per node!

CONTROSPEED MATTERS Turbo Boost Linux The OEM Advantage

Increase Data Plane Performance No Change To Linux Environments Portable Across All Major Platforms Support Extensive Set Of Protocols

12-14 Acceleration

IPsec VPN Gateways

TCP / UDP Termination

Virtual Switching

DPDK

And More...

Unlock Hidden Performance Reduce Time-To-Market Enable Transition To SDN / NFV

DPDK.org meetup – Jeudi prochain – Santa Clara @ 6WIND

THANK YOU!

