
OpenStack
Neutron

Introduction and project status
&

Use case ML2 plugin with l2 population

Summary

1. OpenStack Neutron
○ Why Neutron?
○ What’s Neutron?

2. 2014.1 release
○ Please, stabilize it!
○ Features

3. ML2 plugin with l2
population
mechanism driver
○ ML2 plugin
○ L2 population
○ VXLAN into Linux
○ What’s next?

4. Routing HA

OpenStack Neutron

Why Neutron?
What’s OpenStack:

● Open Source cloud software
● A collection of “cloud services”

● Each service includes:
○ A tenant-facing API that exposes

logical abstractions for consuming
the service.

○ One or more backend
implementations of that API

Why Neutron?

 Compute → Nova

 Imaging → Glance

 Object Storage → Swift

 Identity → Keystone

 Networking → ???

Why Neutron?

What’s Neutron

● Operator selects backend to implement that
core API (ML2, Open vSwitch, Linux Bridge,
Nicira…)

● Extendable API to provider advanced
services

Neutron is an
OpenStack project to
provide "Networking as
a Service" between
interface devices (e.g.,
vNICs) managed by
other Openstack
services (e.g., Nova).

from OpenStack wiki

● Basic API abstraction
(port, L2 network,
subnet) with an eco-
system of tools (CLI,
GUI, API code)

2014.1 release

Please, stabilize it!

● IceHouse release was focused on stabilization of code
and Neutron gate
○ tenant isolation
○ pass full tempest test suite
○ parallelized tests
=> Code Sprint in Montréal

● All third party plugin/driver need to be associated to a
gate test and designate a point of contact

Features

● OVS/LB deprecated =>
migration script

● IPv6 improvement
● Nova ⇔ Neutron: event

base
● Neutron region aware

(first step)
● L3: less router scheduler
● Floating IP status
● Multiple RPC workers
● Improve SR-IOV PCI

passthrough support

Plugin:
● ML2 mechanism driver:

○ Mellanox
○ Big Switch
○ Brocade
○ Open Flow (Ryu)
○ OpenDaylight

● IBM SDN-VE
● Nuage Networks

Drivers:
● LBaaS Radware

And of course, lot of bugs

316 corrected
bugs during
that release

But certainly not all

ML2 plugin with l2 population
mechanism driver

What is Modular Layer 2?
Plugin framework allowing simultaneously
utilize the variety of layer 2 networking
technologies.
● Modular

○ Drivers for layer 2 networks and mechanism --
interface with agent, hardware, controllers…

● Use existing L2 agents
○ Open vSwitch
○ Linux bridge
○ HyperV

● Deprecating existing monolithic plugins

What is Modular Layer 2?

● Replace monolithic plugins
○ eliminate redundant code
○ reduce development & maintenance effort

● Ability to deploy multiple L2 technologies in a
time

● Some new feature arrive with that plugin:
○ Top-of-Rack switch control (Arista, Cisco, Big

Switch)
○ L2 population (see next)

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

Overlay tunnel

Without MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

VNI #1
VNI #2

Overlay tunnel

Without MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

Without MD l2-pop
VM A sends a
broadcast or an
unknown unicast

VNI #1
VNI #2

Overlay tunnel

Without MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

The software switch
duplicates the packet on all
tunnels with VNI #2

VNI #1
VNI #2

Overlay tunnel

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

And only host concerned to
that VNI forward the packet
to the correct local port

And only host concerned to
that VNI forward the packet
to the correct local port

VNI #1
VNI #2

Overlay tunnel

Without MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

VNI #1
VNI #2

Overlay tunnel

Without MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

VNI #1
VNI #2

Overlay tunnel

With MD l2-pop

With MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

VM A sends a
broadcast or an
unknown unicast

VNI #1
VNI #2

Overlay tunnel

With MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

The software switch
duplicates the packet only
on tunnels which have port
into VNI #2

VNI #1
VNI #2

Overlay tunnel

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

And only host concerned to
that VNI forward the packet
to the correct local port

That hosts forwards the
packet to the correct local
port

VNI #1
VNI #2

Overlay tunnel

With MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

ARP

ARP

ARP ARP

ARP

VNI #1
VNI #2

Overlay tunnel

With MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

ARP

VM C sends an
ARP request for
the IP of VM G

ARP

ARP ARP

ARP

VNI #1
VNI #2

Overlay tunnel

With MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

ARP

The software switch lookup
populated forwarding
database to resolve the
ARP request

ARP

ARP ARP

ARP

VNI #1
VNI #2

Overlay tunnel

With MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

ARP And directly answer
to the VM C

ARP

ARP ARP

ARP

VNI #1
VNI #2

Overlay tunnel

With MD l2-pop

L2 population mechanism driver

Host #1

Host #5 Host #2

Host #4 Host #3

VM BVM A

VM F VM DVM E

VM C

VM H

VM G

ARP
Now the VM C can
join the VM G
unicastly

ARP

ARP ARP

ARP

VNI #1
VNI #2

Overlay tunnel

With MD l2-pop

VXLAN into Linux

From release 3.7 of the kernel Linux, a new module called
“VXLAN” appears.

● 3.7: first experimental release
● 3.8: first stable release, no edge replication (multicast necessary),
● 3.9: edge replication only for the broadcasted packets,
● 3.11: edge replication for broadcast, multicast and unknown packets.

VXLAN into Linux

Linux bridge:

● Clearer topology
● Netfilter aware
● Integrated on

recent kernel
● ARP responder

aware

Open vSwitch:

● Complex topology
● Not compatible with

Netfilter
● Need to be

installed
● No ARP responder

VXLAN into Linux
$ ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN…
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ovs-system: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN…
 link/ether fe:59:d1:21:df:e9 brd ff:ff:ff:ff:ff:ff
9: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...
 link/ether 00:ff:ff:e2:28:ff brd ff:ff:ff:ff:ff:ff
11: eth1.: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...
 link/ether 00:ee:ee:e2:28:ff brd ff:ff:ff:ff:ff:ff
12: br-int: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc…
 link/ether 2a:ed:01:84:95:4e brd ff:ff:ff:ff:ff:ff
21: phy-br-eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...
 link/ether a6:05:7b:85:8f:43 brd ff:ff:ff:ff:ff:ff
22: int-br-eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...
 link/ether 62:80:22:8b:5c:db brd ff:ff:ff:ff:ff:ff
23: br-tun: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue…
 link/ether 92:91:13:ea:b6:4c brd ff:ff:ff:ff:ff:ff
28: qbr1d41986e-34: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...
 link/ether 56:9f:e0:48:b5:5b brd ff:ff:ff:ff:ff:ff
29: qvo1d41986e-34: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether be:40:a0:65:83:88 brd ff:ff:ff:ff:ff:ff
30: qvb1d41986e-34: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether 56:9f:e0:48:b5:5b brd ff:ff:ff:ff:ff:ff
31: tap1d41986e-34: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether fe:16:3e:33:38:0c brd ff:ff:ff:ff:ff:ff
32: qbrf952e707-40: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether 1a:59:e0:e5:ab:22 brd ff:ff:ff:ff:ff:ff
33: qvof952e707-40: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether 3e:4e:a7:93:ee:65 brd ff:ff:ff:ff:ff:ff
34: qvbf952e707-40: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether 1a:59:e0:e5:ab:22 brd ff:ff:ff:ff:ff:ff
35: tapf952e707-40: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...
 link/ether fe:16:3e:a6:df:5e brd ff:ff:ff:ff:ff:ff
36: qbr071bfc31-4f: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether 9e:7b:b9:23:0e:de brd ff:ff:ff:ff:ff:ff
37: qvo071bfc31-4f: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether fa:6d:23:15:d6:aa brd ff:ff:ff:ff:ff:ff
38: qvb071bfc31-4f: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether 9e:7b:b9:23:0e:de brd ff:ff:ff:ff:ff:ff
39: tap071bfc31-4f: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether fe:16:3e:b8:4d:a8 brd ff:ff:ff:ff:ff:ff
40: qbr02e1b26c-8e: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether fe:16:3e:2f:bb:d1 brd ff:ff:ff:ff:ff:ff
41: qvo02e1b26c-8e: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether 36:05:fb:fb:15:38 brd ff:ff:ff:ff:ff:ff
42: qvb02e1b26c-8e: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether fe:19:02:0f:a2:1f brd ff:ff:ff:ff:ff:ff
43: tap02e1b26c-8e: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether fe:16:3e:2f:bb:d1 brd ff:ff:ff:ff:ff:ff

Host

VM A VM CVM B VM D

br-int

br-tun

Flow tables for
all VNI

src tunnel IP
(eth)

VXLAN into Linux

Host

VM A VM CVM B VM D

br-int

br-tun

$ brctl show
bridge name bridge id STP enabled interfaces
qbr071bfc31-4f 8000.9e7bb9230ede no qvb071bfc31-4f
 tap071bfc31-4f
qbr1d41986e-34 8000.569fe048b55b no qvb1d41986e-34
 tap1d41986e-34
qbr92a4d5e1-9c 8000.b273e09878bd no qvb92a4d5e1-9c
 tap92a4d5e1-9c
qbrf952e707-40 8000.1a59e0e5ab22 no qvbf952e707-40
 tapf952e707-40

src tunnel IP
(eth)

VXLAN into Linux
$ ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN…
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
9: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether 00:ff:ff:e2:28:ff brd ff:ff:ff:ff:ff:ff
11: eth1.: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether 00:ee:ee:e2:28:ff brd ff:ff:ff:ff:ff:ff
30: brq1d41986e-34: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether 56:9f:e0:48:b5:5b brd ff:ff:ff:ff:ff:ff
31: vxlan-1000: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether 56:9f:e0:48:b5:5b brd ff:ff:ff:ff:ff:ff
32: tap1d41986e-34: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether fe:16:3e:a6:df:5e brd ff:ff:ff:ff:ff:ff
33: tapf952e707-40: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether fe:16:3e:a6:df:5f brd ff:ff:ff:ff:ff:ff
34: brq123986e-ef: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether 56:9f:e0:48:b5:5b brd ff:ff:ff:ff:ff:ff
35: vxlan-1001: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>...
 link/ether 56:9f:e0:48:b5:5b brd ff:ff:ff:ff:ff:ff
36: tapfe34586e-3e: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether fe:16:3e:a6:df:5e brd ff:ff:ff:ff:ff:ff
37: tape452e347-43: <BROADCAST,MULTICAST,UP,LOWER_UP>...
 link/ether fe:16:3e:a6:df:5f brd ff:ff:ff:ff:ff:ff

Host

VM A VM CVM B VM D

src tunnel IP
(eth)

Tables flows
for all VNI

Bridge by VNI
with VNI’s fdb
entries and the
VXLAN port

VXLAN into Linux
$ brctl show
bridge name bridge id STP enabled interfaces
brq1d41986e-34 8000.fe163e2fbbd1 no vxlan-1000
 tap1d41986e-34
 tapf952e707-40
brq123986e-ef 8000.9e7bb9230ede no vxlan-1001
 tapfe34586e-3e
 tape452e347-43

Host

VM A VM CVM B VM D

src tunnel IP
(eth)

What next?

Re-think the l2-pop mechanism driver by
dividing it into multiple mechanism drivers:
1. Topology MD to publish forwarding database

entries
○ Try to create a topic by network
○ Agent could consume network topic according to

their needs
2. Partial mesh MD to provision broadcast

flows on the agent
3. ARP responder MD to populate fdb entries

Routing HA

Routing HA

A first
implementatio
n based on
VRRP and
Conntrackd

Routing HA

Another
improvement is
plan for the J
release: edge
routing distribution

Questions

?
● OpenStack release status:

http://status.openstack.org/release/
● ML2 wiki page:

https://wiki.openstack.org/wiki/Neutron/ML2
● ML2 MD L2 population:

https://wiki.openstack.org/wiki/L2population
● Routage HA:

○ v1: https://wiki.openstack.
org/wiki/Neutron/L3_High_Availability_VRRP

○ v2: https://docs.google.
com/drawings/d/1GGwbLa72n8c2T3SBApKK7uJ
6WLTSRa7erTI_3QNj5Bg/edit & https://docs.
google.
com/document/d/1depasJSnGZPOnRLxEC_PYs
VLcGVFXZLqP52RFTe21BE/edit#heading=h.
5w7clq272tji

http://status.openstack.org/release/
http://status.openstack.org/release/
https://wiki.openstack.org/wiki/Neutron/ML2
https://wiki.openstack.org/wiki/Neutron/ML2
https://wiki.openstack.org/wiki/L2population
https://wiki.openstack.org/wiki/L2population
https://wiki.openstack.org/wiki/Neutron/L3_High_Availability_VRRP
https://wiki.openstack.org/wiki/Neutron/L3_High_Availability_VRRP
https://wiki.openstack.org/wiki/Neutron/L3_High_Availability_VRRP
https://docs.google.com/drawings/d/1GGwbLa72n8c2T3SBApKK7uJ6WLTSRa7erTI_3QNj5Bg/edit
https://docs.google.com/drawings/d/1GGwbLa72n8c2T3SBApKK7uJ6WLTSRa7erTI_3QNj5Bg/edit
https://docs.google.com/drawings/d/1GGwbLa72n8c2T3SBApKK7uJ6WLTSRa7erTI_3QNj5Bg/edit
https://docs.google.com/document/d/1depasJSnGZPOnRLxEC_PYsVLcGVFXZLqP52RFTe21BE/edit#heading=h.5w7clq272tji
https://docs.google.com/document/d/1depasJSnGZPOnRLxEC_PYsVLcGVFXZLqP52RFTe21BE/edit#heading=h.5w7clq272tji
https://docs.google.com/document/d/1depasJSnGZPOnRLxEC_PYsVLcGVFXZLqP52RFTe21BE/edit#heading=h.5w7clq272tji
https://docs.google.com/document/d/1depasJSnGZPOnRLxEC_PYsVLcGVFXZLqP52RFTe21BE/edit#heading=h.5w7clq272tji
https://docs.google.com/document/d/1depasJSnGZPOnRLxEC_PYsVLcGVFXZLqP52RFTe21BE/edit#heading=h.5w7clq272tji
https://docs.google.com/document/d/1depasJSnGZPOnRLxEC_PYsVLcGVFXZLqP52RFTe21BE/edit#heading=h.5w7clq272tji

