
The Real Workflow of
OpenStack: Managing

Expectations

Kendall Nelson IRC: diablo_rojo twitter:
@knelson92

Patrick East IRC: patrickeast
twitter: @peast907

What’s all this about?

● Getting a new feature into OpenStack is a lengthy process and a difficult one
for people that haven’t ever done it before

● Open Collaboration is good, but it can slow down the process and cause
unexpected delays

Let’s Add a
Feature!

Let’s add
a

Feature!

What is a Blueprint?

● https://wiki.openstack.org/wiki/
Blueprints

● Do I actually need a blueprint?
● Depends… check with your

project

Spec? What? Where?

● Do I actually need a spec?
● Depends… check with your project

● http://specs.openstack.org/
● Gerrit review process

http://specs.openstack.org/
http://specs.openstack.org/

Remember that nice flow chart?

X 2

● So... gonna need to go
through this workflow for a
spec before you get your
code in

The Meeting

● Somewhere along the way there will probably be at least one meeting to
decide the fate of your feature

● What? Really?
○ Depends… some projects tend to use meetings to discuss features and design, others don’t
○ Sometimes less serious than others...

Spec has been Merged, Now What?

● Spec & Blueprint Approved
● Code time!

Round 2!
Let’s add a
feature!

Spec Iteration

Code Iteration

Blueprint

Code time! ● Spec Iteration flows into code
iteration

Implemented the Code...and Everyone Has an
Opinion about it...

● -1’s? -2? What?!
● Don’t sweat it...
● Time to increment the patchset

Feature Freeze!

● It has a way of sneaking up on you…
● Don’t forget there are different freeze dates for different parts of the

process
○ https://releases.openstack.org/

● Not all hope is lost! Look for the Feature Freeze Exception emails!

https://releases.openstack.org/
https://releases.openstack.org/

Working for the Common Good

● Design by committee
● Everyone has a use-case and an

opinion
● Features typically cater to the

lowest common denominator
● Edge cases for atypical

deployments, hardware, and
use-cases need to be handled

Update Spec

● Update the spec to match the actual code implementation
● Get it reviewed and agreed upon

○ ...again

● Move it to the right release directory!

Round 2.5?
Let’s add a
feature!

Spec Iteration

Code Iteration

Blueprint

Code time!

 Code is
different

from spec,
go update

spec now to
match the

code

Test the Code

● Need more than just CI and Jenkins to pass
● Functional tests? Unit tests? QA?
● Ask others to test on their hardware

Let’s add
a feature!

Spec Iteration

Code Iteration

Blueprint

Code
time!

 Code is
different

from spec,
go update

spec now to
match the

code

Round.. 5 to x ?

Testing time!

x3 for devstack, devstack-gate,
and tempest Iterations

 Tests don’t
match code,
go update
the code

Hurdles to Merging the Code!

● Merge conflict?!
● Jenkins failure?

○ http://status.openstack.org/zuul/
○ http://status.openstack.org/openstack-health/#/

● Dependent patches?

http://status.openstack.org/zuul/
http://status.openstack.org/zuul/
http://status.openstack.org/openstack-health/#/
http://status.openstack.org/openstack-health/#/

It’s in Master, Now Where is my Feature?

- Chances are you aren’t running on master (maybe not even the most recent
release) and need to to be backported

- Release outside of upstream maintenance?
- Ask <insert distro here> nicely to backport it to your current release (is

possible)

Let’s add a feature!
Remember when
you thought this
was a good idea?

Spec Iteration

Code Iteration

Blueprint

Code
time!

 Code is
different

from spec,
go update
spec now
to match
the code

Testing
time!

x3 for devstack, devstack-gate,
and tempest Iterations

 Tests
don’t

match
code, go
update

the code

Now you need
the feature
backported

stable/<your-release
> Iteration

Almost there I promise..
DONE!

And that’s all
there is to it :)

Why Did this Suck so
Much?

Can it be easier?

Baby Steps

A 10k Line Patch Isn’t A Good First
Impression

● Start small
○ Learn the process
○ Meet the reviewers

● Big patches can be hard to get review attention on
● Generally need a lot of help to merge
● Rebase hell
● Probability of introducing bugs skyrockets
● Start with making friends not LOC to get involved

Contributors are individuals

● Don’t rely on your company’s to get code merged
● The community sees you as a single person

○ Need to build street cred and that may take time depending on the project

It’s Not Personal

-1’s Are Not The End of The World

● Don’t stress it
● Could mean anything, usually it’s a typo or formatting issue with your

comments
○ Unless its jenkins…

● Doesn’t mean the code is bad or can’t ever merge

Someone actually reviewed your patch!

● Good news!
● Someone cares enough to look at your code!
● Negative reviews are progress too
● Any attention is usually good attention for a patch

-2’s May Not Be Final…

● Sometimes… maybe…
● General indication that more discussion

might be needed
○ Weekly-meeting
○ PTG
○ Summit

● Can be reversed with communication
and/or compromise

○ Sometimes it’s a misunderstanding

You Can Say No To Review Feedback

● Not all reviewers are right 100% of the time
○ Yes, even the project cores and PTL’s

● If you get negative feedback and disagree, it’s
okay to push back

● Explain your side and ask for them to clarify their
points

● Involve more people
○ Weekly meetings are good
○ Openstack-dev mailing list
○ IRC

Keep Your Cool

● Remember that you are
dealing with other humans

● Keep things civil, even if they
are in the wrong

● Consider other viewpoints
● (╯°□°）╯︵ ┻━┻

Working With
Others

How to Make Friends

● Actively participate in the community
(mid-cycles/ PTG, meetups, beer NDA’s, etc)

● Give back to the Community
○ Answer other people’s questions that post in IRC
○ Code Reviews
○ Test other’s code
○ Triage bugs
○ Respond to ML threads

● You can’t expect something if you give nothing

Changes Impact Everyone

● It is a huge community
● Affect multiple distro’s, vendors, deployments
● Requires feedback and buy-in from diverse community

Setting
Expectations

Features & Bug Fixes Are Sometimes Slow

● Even small patches can take a very very long time
● Depends on..

○ Complexity of change
○ How controversial the change is
○ Project activity
○ Priority
○ Severity

● Some trivial changes can take months to merge

Making Promises

● Be careful about promising feature X will be in release milestone Y
○ Until it actually merges all bets are off..and even then..
○ Don’t rely on FFE

● Targeting features and bug fixes for a release milestone is a guide not a
commitment from the project team

Can’t Plan Like In-House Projects

● Normal project planning with milestones doesn’t always work very well
○ Hard to predict landing features
○ If they slip a freeze date they are postponed ~6 months

● Resources you require aren’t usually all on your team
○ The larger features will require time and resources from other companies, they all have their

own schedules and goals too

Better Way To Plan?

● Look at release schedule
○ More direction about when things need to be done by to make the cut

● Anticipate delays due to the process
● Be involved in conversations about release priorities
● Be involved in the community and review other code

○ Participating takes time, plan for it

Why are we this masochistic?

● It’s not always this bad
○ We pick on extreme examples...

● Features are better tested
● Bugs get fixed quickly because they affect everyone
● Your company doesn’t do ALL the work maintaining the core code

○ Shared responsibility
○ Get to benefit from the hard work of others

TL;DR:

● The process of getting a new feature is often a long and difficult one
● The community is a part of the equation, it is not just writing code
● This is open source, it is difficult to quickly force in new things
● Be wary of making promises to management... it’s not over until the code

merges and ships downstream

Questions??

Thanks!

