
Networking-vpp:
An OpenStack ml2

driver for VPP

Jerome	Tollet	/	Ian	Wells	

FD.io	Program	|	July	6th,	2017	

fd.io	FoundaBon	 1	

Agenda

• What	is	networking-vpp?	
•  Design	principles	
•  Overall	architecture	
•  Current	feature	set	
•  Focus	on	HA	features	

•  Clustering	etcd	
•  TransacBonal	port	setup	

•  Focus	on	Security	features	
•  Roadmap	for	17.07	
•  QuesBons	

fd.io	FoundaBon	 2	

What is networking-vpp

•  FD.io	/	VPP	is	a	fast	so'ware	dataplane	that	can	be	used	to	speed	up	
communicaBons	for	any	kind	of	VM	or	VNF.	

•  VPP	can	speed-up	both	East-West	and	North-South	communicaBons	

•  Networking-vpp	is	a	project	aiming	at	providing	a	simple,	robust,	
produc5on	grade	integraBon	of	VPP	in	OpenStack	using	ml2	interface	

•  Goal	is	to	make	VPP	a	first	class	ci5zen	component	in	OpenStack	for	NFV	
and	Cloud	applicaBons	

fd.io	FoundaBon	 3	

Networking-vpp: Design Principles

• Main	design	goals	are:	simplicity,	robustness,	scalability	

•  Efficient	management	communicaBons	
•  All	communicaBon	is	asynchronous	
•  All	communicaBon	is	REST	based	

• Robustness	
•  Built	for	failure	–	if	a	cloud	runs	long	enough,	everything	will	happen	eventually	
•  All	modules	are	unit	and	system	tested	

• Code	is	small	and	easy	to	understand	(no	spaghe^/legacy	code)	

Networking-vpp: current feature set
•  Network	types	

•  VLAN:	supported	since	version	16.09	
•  VXLAN-GPE:	supported	since	version	17.04	

•  Port	types	
•  VM	connecBvity	done	using	fast	vhostuser	interfaces	
•  TAP	interfaces	for	services	such	as	DHCP	

•  Security	
•  Security-groups	based	on	VPP	stateful	ACLs	
•  Port	Security	can	be	disabled	for	true	fastpath	
•  Role	Based	Access	Control	and	secure	TLS	connecBons	for	etcd	

•  Layer	3	Networking	
•  North-South	FloaBng	IP	
•  North-South	SNAT	
•  East-West	Internal	Gateway	

•  Robustness	
•  If	Neutron	commits	to	it,	it	will	happen	
•  Component	state	resync	in	case	of	failure:	recovers	from	restart	of	Neutron,	the	agent	and	VPP	

Networking-vpp, what is your problem?

•  If	you	give	a	device	a	list	of	jobs	to	do,	it’s	really	hard	to	make	sure	it	
gets	them	all	and	acts	on	them	
•  If	you	give	a	device	a	descrip4on	of	the	state	you	want	it	to	get	to,	the	
task	can	be	made	much	easier	

fd.io	FoundaBon	 6	

Networking-vpp: overall architecture

Compute	Node	

VPP	

VP
P	
Ag

en
t	

VM	 VM	 VM	

vhostuser	

Compute	Node	

VPP	

VP
P	
Ag

en
t	

VM	 VM	 VM	

vhostuser	

Neutron	Server	

ML2	VPP	
Mechanism	Driver	

journaling	

HTTP/json	

dpdk	dpdk	

vlan	/	flat	network	

Networking-vpp: port creaFon process

Compute	Node	

VPP	

VP
P	
Ag

en
t	

VM	

vhostuser	

Neutron	Server	

ML2	VPP	
Mechanism	Driver	

dpdk	

2
3

5

4

3

	
networking-vpp/nodes/vpp-rocks/ports/
c367e21f-ae39-4549-b87d-2e69636155c6	
	
{"allowed_address_pairs":	[],	"segmentaBon_id":	194,	
"mtu":	1500,	"binding_type":	"plugtap",	"physnet":	
"physnet",	"mac_address":	"fa:16:3e:03:ce:ff",	
"port_security_enabled":	false,	"fixed_ips":	
[{"subnet_id":	"006fce47-6072-4099-a695-
c3caa140fff7",	"ip_address":	"10.0.0.2"},	{"subnet_id":	
"81b2qdc-c350-4f35-9b9b-909cf33a4426",	
"ip_address":	"fd59:3bf6:c35d:0:f816:3eff:fe03:ceff"}],	
"network_type":	"vlan",	"security_groups":	[]}	

	

	
	
	/networking-vpp/state/vpp-rocks/ports/
d2069a46-3a47-4ec7-94J-3b1bcd4c6dc0	
	
{"net_data":	{"segmentaBon_id":	null,	"if_physnet":	"tap-2",	"bridge_domain_id":	3,	
"if_uplink_idx":	[3],	"network_type":	"flat",	"physnet":	"physnet"},	"bind_type":	"plugtap",	
"ext_tap_name":	"tapd2069a46-3a",	"mac":	"fa:16:3e:5d:fe:c4",	"bridge_name":	"br-
d2069a46-3a",	"int_tap_name":	"vppd2069a46-3a",	"iface_idx":	6}	
	

Request	 NoBficaBon	
1 5

1

2

Networking-vpp: Resync mechanism

•  The	agent	marks	everything	it	puts	in	VPP	
•  If	the	agent	restarts,	it	comes	up	with	no	knowledge	of	
what’s	in	VPP,	so	it	reads	those	marks	back	

•  While	it’s	been	gone,	things	may	have	happened	and	etcd	
will	have	changed	

•  For	each	item,	it	can	see	if	it’s	correct	or	if	it’s	out	of	date	
(for	instance,	deleted),	and	it	can	also	spot	new	ports	it’s	
been	asked	to	make	

•  With	that	informaBon,	it	does	the	minimum	necessary	to	
fix	VPP’s	state	

•  This	means	that	while	the	agent’s	gone,	traffic	keeps	
moving	

•  Neutron	is	abiding	by	its	promises	(‘I	will	do	this	thing	for	
you	at	the	first	possible	moment’)	

fd.io	FoundaBon	 9	

Compute	Node	

VPP	

VP
P	
Ag

en
t	

VM	

vhostuser	

dpdk	

Networking-vpp: HA etcd deployment

•  etcd	is	a	strictly	consistent	store	
that	can	run	with	mulBple	
processes	
•  They	talk	to	each	other	as	they	
get	the	job	done	
•  A	client	can	talk	to	any	of	them	
•  Various	deployment	models	–	
the	client	can	use	a	proxy	or	talk	
directly	to	the	etcd	processes	

fd.io	FoundaBon	 10	

The	service	

The	processes	

Client	

Networking-vpp: simplicity

$ rm -rf tests

$ wc `find . -name *.py -print`  
 2886 11520 123320 ./agent/server.py  
[...]  
 921 2834 35173 ./agent/vpp.py  
[...]  
 1067 4607 46112 ./mech_vpp.py  
[...]  
 7336 27864 290940 total

fd.io	FoundaBon	 11	

Most	of	the	agent	code	

A	nicer	VPP	Python	API	

Most	of	the	mechanism	driver	

NB:	this	code	has	comments	–	1839	lines	of	code	in	the	above	three	files	

Networking-vpp: Security and RBAC

•  Etcd	can	work	over	TLS	(HTTPS)	when	talking	to	itself	and	its	clients	
•  Each	client	can	have	a	credenBal	that	gives	it	limited	access	(R,	RW,	
None)	
• Networking-VPP	is	designed	so	that	nearly	all	the	keys	are	writen	by	
only	one	type	of	process	

RBAC	can	be	used	to	protect	the	datastore	from	both	confused	and	
malicious	processes	

fd.io	FoundaBon	 12	

Networking-vpp: Role Based Access Control

fd.io	FoundaBon	 13	

Compute	Node	1	

Neutron	Server	

HTTPS/json	

Compute	Node	2	

•  Security	Hardening		
•  TLS	communicaBon	between	
nodes	and	ETCD	:		
•  ConfidenBality	and	integrity	of	the	
messages	in	transit	and	
authenBcaBon	of	ETCD	server.	

•  ETCD	RBAC	:	
•  Limit	the	impact	of	a	compromised	
Compute	Node	to	the	node	itself	

Networking-vpp: Role Based Access Control

fd.io	FoundaBon	 14	

ETCD/Node1	
Requests	

ETCD/Node1	
Status	
	

ETCD/Node2	
Requests	
	

ETCD/Node2	
Status	
	

Neutron	Server	 R/W	 R/O	 R/W	 R/O	

Compute	Node	1	 R/O	 R/W	 Access	Denied	
	

Access	Denied	
	

Compute	Node	2	 Access	Denied	 Access	Denied	
	

R/O	 R/W	

Networking-vpp: Port bind request etcd
model
Port	state	Key/Value	sample	

•  networking-vpp/nodes/{SERVER}/{PORT	UUID}	

Port	state	Key/Value	sample	

networking-vpp/nodes/vpp-rocks/ports/c367e21f-ae39-4549-b87d-2e69636155c6	

{ 	"allowed_address_pairs":	[],		

	"segmentaBon_id":	194,		

	"mtu":	1500,		

	"binding_type":	"plugtap",		

	"physnet":	"physnet",		

	"mac_address":	"fa:16:3e:03:ce:ff",		

	"port_security_enabled":	false,		

	"fixed_ips":	[{"subnet_id":	"006fce47-6072-4099-a695-c3caa140fff7",	"ip_address":	"10.0.0.2"},	

	 	{"subnet_id":	"81b2qdc-c350-4f35-9b9b-909cf33a4426",	"ip_address":	"fd59:3bf6:c35d:0:f816:3eff:fe03:ceff"}],		

	"network_type":	"vlan",	"security_groups":	[]	

}	

	

fd.io	FoundaBon	 15	

Networking-vpp: port state etcd model
Port	state	Key/Value	model	

•  /networking-vpp/state/{SERVER	NAME}/ports/{PORT	UUID}	
•  the	ports	that	the	VPP	agent	has	programmed	VPP	with	(the	same	list	-	it's	done	all	its	jobs),	plus	the	physnets	that	this	host	knows	about	
•  Key	is	inserted	by	the	Agent	in	etcd	when	port	is	created	into	VPP.		

•  Value	is	for	debugging	purpose	(e.g.	port	indexes,	bridge	names)	

Port	state	Key/Value	sample	

/networking-vpp/state/vpp-rocks/ports/d2069a46-3a47-4ec7-94q-3b1bcd4c6dc0	
{"net_data":	{	"segmentaBon_id":	null,	"if_physnet":	"tap-2",	"bridge_domain_id":	3,		

	"if_uplink_idx":	[3],	"network_type":	"flat",	"physnet":	"physnet"},		

"bind_type":	"plugtap",		

"ext_tap_name":	"tapd2069a46-3a",		

"mac":	"fa:16:3e:5d:fe:c4",	

"bridge_name":	"br-d2069a46-3a",	

"int_tap_name":	"vppd2069a46-3a",		

"iface_idx":	6}	

fd.io	FoundaBon	 16	

Networking-vpp: Security Groups etcd model

Security	Group	etcd	Key/Value	structure	
•  /networking-vpp/global/secgroups/{SECGROUP	UUID}	->	JSON	SecGroup	detecBon	
	
Security	Group	Key/Value	sample	
/networking-vpp/global/secgroups/2be282a7-0a04-4411-9a8f-4eeb1c676454	
{"ingress_rules": [

{"is_ipv6": 0, "remote_ip_addr": "0.0.0.0", "ip_prefix_len": 0, "protocol": 0, "port_min": 0, "port_max": 0}, 	
{"is_ipv6": 1, "remote_ip_addr": "0:0:0:0:0:0:0:0", "ip_prefix_len": 0, "protocol": 0, "port_min": 0, "port_max":
0}		

"egress_rules": [
{"is_ipv6": 1, "remote_ip_addr": "0:0:0:0:0:0:0:0", "ip_prefix_len": 0, "protocol": 0, "port_min": 0, "port_max":
0}, {"is_ipv6": 0, "remote_ip_addr": "0.0.0.0", "ip_prefix_len": 0, "protocol": 0, "port_min": 0, "port_max": 0}]	

}	

fd.io	FoundaBon	 17	

Networking-vpp: [VXLAN|LISP]-GPE

• VXLAN-GPE	was	introduced	in	networking-vpp	17.04	
•  Encapsulate	layer	2	frames	from	the	VMs	into	layer	3	packets	(GPE)	
• Provides	very	large	horizontal	scaling	and	isolaBon	

• When	a	VM	is	created,	MAC	address	(aka	EID)	is	populated	in	all	VPP	
bridge	domains	belonging	to	the	same	VNI	

• GPE	data	stored	under		/networking-vpp/global/networks/gpe	

fd.io	FoundaBon	 18	

Networking-vpp: [VXLAN|LISP]-GPE etcd
model
GPE	etcd	Key/Value	structure	
•  /networking-vpp/global/networks/gpe/{VNI}/{HOSTNAME}/{MAC_ADDRESS}	->	Underlay	IP	
address	

GPE	Key/Value	sample	

•  /networking-vpp/global/networks/gpe/1007/sjo-smf-ubuntu-server-3/fa:16:3e:ba:a8:12	
•  /networking-vpp/global/networks/gpe/1007/sjo-smf-ubuntu-server-3/fa:16:3e:20:3e:c2	

•  /networking-vpp/global/networks/gpe/1007/sjo-smf-ubuntu-server-2/fa:16:3e:eb:c9:d8	
•  /networking-vpp/global/networks/gpe/1007/sjo-smf-ubuntu-server-2/fa:16:3e:82:50:81	

fd.io	FoundaBon	 19	

Networking-vpp: layer 3 routers model
Layer	3	etcd	Key/Value	structure	

•  	/networking-vpp/nodes/{SERVER}/routers/interface/{INTF	UUID}		
•  Details	of	a	single	Neutron	router	interface	i.e.	tenant	network	interface	on	a	neutron	router	

•  	/networking-vpp/nodes/{SERVER}/routers/router/{ROUTER	UUID}	
•  Details	of	a	single	neutron	router	including	external	networking	details	if	a	ruoter	gateway	is	set	

•  	/networking-vpp/nodes/{SERVER}/routers/floaBngip/{FIP	UUID}	
•  This	etcd	entry	contains	the	data	required	to	program	1-to-1	SNAT	on	a	single	VPP	router.	

	

Layer	3	etcd	Key/Value	sample	

/networking-vpp/nodes/bxb-ds-51.bxb.os/routers/interface/9d8cd87b-09be-4b87-96b8-b29e1e771ae9

•  {"segmentation_id": 181, "mtu": 1500, "vrf_id": 1, "gateway_ip": "20.0.0.1", "prefixlen": 24, "net_type": "vlan", "loopback_mac": "fa:16:3e:b9:48:86", "physnet": "physnet1", "is_ipv6": false}	

	

/networking-vpp/nodes/bxb-ds-51.bxb.os/routers/router/9d8cd87b-09be-4b87-96b8-b29e1e771ae9

{ 	"status": "ACTIVE", "external_gateway_info": {"network_id": "c9316ebc-65a9-4b31-b478-18bd9e82a396", "enable_snat": true, "external_fixed_ips": [{"subnet_id":
"ef282a5d-01c0-4858-8eaa-fb57386dfb23", "ip_address": "50.0.0.9"}]}, "external_segment": 133, "description": "", "gw_port_id": "4bc69cb0-4a42-49cf-8d8c-8c5ff3d31628",
"admin_state_up": true, "tenant_id": "5d0cd1a146be414f9fc482ba557e035b", "created_at": "2017-04-20T20:38:50Z", "updated_at": "2017-04-24T16:33:59Z", "name": "r1",
"external_physnet": "physnet1", "gateways": [["50.0.0.9", 24]], "revision_number": 12, "vrf_id": 1, "project_id": "5d0cd1a146be414f9fc482ba557e035b", "id": "9d8cd87b-09be-4b87-96b8-
b29e1e771ae9", "external_net_type": "vlan"}	

	

/networking-vpp/nodes/bxb-ds-51.bxb.os/routers/floa5ngip/aaae2779-2713-4e26-a68e-b851af86ff0d		

{ 	"internal_segmentaBon_id":	181,	"external_net_type":	"vlan",	"internal_net_type":	"vlan",	

	"fixed_ip_address":	"20.0.0.7",	"floaBng_ip_address":	"50.0.0.4",	"external_segmentaBon_id":	133,	"event":	"associate",	"physnet":	"physnet1	»	}	

fd.io	FoundaBon	 20	

Networking-vpp: Roadmap

Next	version	will	be	networking-vpp	17.07	
•  Security	Groups	

•  support	for	remote-group-ID	
•  Support	for	addiBonal	protocol	fields	

• VXLAN-GPE	
•  support	for	ARP	handling	in	VPP	
•  Resync	states	in	case	of	agent	restart	

•  TesBng,	tesBng,	tesBng	
	
	

fd.io	FoundaBon	 21	

